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This project is an attempt to communicate as concisely the details I found most relevant1

in the result of [DEL+21] on the existence of locally testable codes with constant rate,
constant distance, and constant locality (c3). I did some refactoring of the proofs and tried
to suppress details I found less enlightening where possible. Feedback is welcome :)

The project is organized as follows:

• Section 1 on preliminaries discusses codes, agreement and local testability, as well as
spectral expansion. Feel free to skip this but refer back to it later if something is
unclear (I use some slightly unusual notation for walks that I find convenient).

• Section 2 describes the left-right Cayley complex, a half combinatorial half algebraic
object that provides the scaffolding on which we build good locally testable codes.

• Section 3 discusses this left-right Cayley code and its properties. Here, we prove local
testability under appropriate assumptions. This is where most of the magic happens.

• Finally, Section 4 instantiates everything and proves the main result. It is good to skip
to this section now and briefly peak at the main result to get a sense of the destination.

1 Preliminaries

1.1 Codes

For the purposes of this project, we use “code” as a shorthand for binary linear block codes.

Definition 1. A binary linear block code is a linear subspace C of the vector space FL2 where
L is some finite index set. We call |L| the “block length” of C and dimC its “message
length”. The “rate” of C is

ρ(C) :=
dimC

|L|

and the (normalized) “distance” of C is

δ(C) :=
min{‖c− c′‖1 : c, c′ ∈ C, c 6= c′}

|L|
=

min{‖c‖1 : c ∈ C, c 6= 0}
|L|

.

Lastly, the distance of a string w ∈ FL2 to the code C is

d(w,C) :=
min{‖w − c‖1 : c ∈ C}

|L|
.

1Relevant to CS 860 at UWaterloo in W2022 (https://cs.uwaterloo.ca/~lapchi/cs860/).
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We will also make frequent use of tensor codes, which consist of matrices whose rows
belong to one given code and whose columns belong to another given code.

Definition 2. Let CA ⊆ FA2 and CB ⊆ FB2 be codes. The tensor code of CA and CB is

CA ⊗ CB := {c ∈ FA×B2 : ∀a ∈ A ∀b ∈ B c(·, b) ∈ CA, c(a, ·) ∈ CB}

where c(·, b) denotes the string a′ 7→ c(a′, b) in FA2 and likewise for c(a, ·).

1.2 Agreement Testable Codes

Agreement testability is a weaker property of a code than local testability (which we will
define soon). However, agreement testability is a less rare property that can be refined to
local testability once we have the appropriate tools.

Definition 3. Let CA ⊆ FA2 and CB ⊆ FB2 be codes. We say that CA and CB are φ-agreement
testable when, for all fA ∈ CA ⊗ FB2 and fB ∈ FA2 ⊗ CB, there is w ∈ CA ⊗ CB such that

P
(a,b)∼U(A×B)

(fA(a, b) 6= fB(a, b)) ≥ φmax

{
P

a∼U(A)
(fA(a, ·) 6= w(a, ·)), P

b∼U(B)
(fB(·, b) 6= w(·, b))

}
,

i.e. the fraction of entries in which fA and fB disagree is proportional to the fraction of
rows in which fA and w differ as well as the fraction of columns in which fB and w differ.

Lemma 1. For every ρ ∈ (0, 1), there are δ, φ > 0 and D ∈ Z+ such that, for every
sufficiently large multiple d of D, there is a code C0 ⊆ Fd2 for which ρ(C0) ≥ ρ, δ(C0) ≥ δ,
and C0 ⊗ C0 is φ-agreement testable.

We do not prove the lemma here to avoid a lengthy (but very interesting) tangent. The
idea is to consider random low-density parity check (LDPC) codes, introduced by [Gal63]. It
is a straightforward combinatorial calculation to to show that the factor graph of a random
LDPC code is a bipartite expander with high probability. Then, one can argue that the
tensor product of LDPC codes on expanding factor graphs is agreement testable [DSW06].

1.3 Locally Testable Codes

Informally, a q-local tester for a code randomly chooses a set I of q bits from a string c to
read and then accepts or rejects c depending on whether the read bits c|I belong to some set
of valid local views. More precisely:

Definition 4. A q-local tester for a code C ⊆ FL2 is a pair (Q,V) where Q is a probability
distribution over

(
L
q

)
and V ⊆

⋃
I∈(Lq)

FI2.

We say that (Q,V) is complete when, for any c ∈ C,

P
I∼Q

(c|I ∈ V) = 1.

Finally, (Q,V) is said to be κ-sound (κ ∈ (0, 1)) when, for any w ∈ FL2 , we have that

P
I∼Q

(w|I /∈ V) ≥ κd(w,C).
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1.4 Expansion

We consider a slightly unusual notion of expansion that allows us to speak more easily of
walks on non-regular graphs. It will be notationally convenient to consider spaces of signed
measures on a set but it is fine to think of the more usual spaces R|V | instead.

Definition 5. Let V be any finite set. We associate to V the Hilbert space (M(V ), 〈·, ·〉)
whereM(V ) denotes the set of signed measures on V and 〈f, g〉 :=

∑
v∈V f({v})g({v}). We

identify a point v ∈ V with the Dirac measure δv (these form a basis). In the same spirit, we
identify 1 with the uniform distribution U(V ). A Markov operator on this space is a positive
semi-definite linear map M :M(V )→M(V ) s.t. M1 = 1. We say that M is a λ-expander
(for λ ∈ [0, 1)) if for every f ∈M(V ) such that 〈f, 1〉 = 0, we have

〈Mf, f〉 ≤ λ 〈f, f〉 .

An important random walk on graphs is the neighbor walk in which we choose a neighbor
of the current vertex uniformly at random at every step.

Definition 6. The neighbor walk operator of a graph G = (V,E), denoted NG, is the Markov
operator M(V )→M(V ) s.t. NGv = U({v′ ∈ V : {v, v′} ∈ E}) for all v ∈ V . We say that
G is a λ expander if NG is a λ-expander.

The crucial property of expander walks is that they remain in small regions with low
probability. We will exploit this fact later to show that a certain region must be large.

Theorem 1 (Alon–Chung [AC88]). Let M be a λ-expander on V and let ∅ 6= T ⊆ V be
such that Ev∼U(T )[Pv′∼Mv(v

′ ∈ T )] ≥ p. Then |T | ≥ (p− λ) |V |.

The proof of this key result is actually quite simple. The main idea is to decompose U(T )

as |T ||V |1 + h for some h ⊥ 1 and notice that 〈M(U(T )),U(T )〉 = Ev∼U(T )[Pv′∼Mv(v
′ ∈ T )].

2 The Left-Right Cayley Complex

In order to lift agreement testable codes to locally testable codes, we require some algebraic
apparatus. Recall that a group is a set G equipped with an associative binary operator
· : G2 → G, an identity e ∈ G, and inverses (·)−1 : G→ G. We say that T ⊆ G is symmetric
when it is closed under inversion, i.e. g−1 ∈ T for all g ∈ T . We call such a symmetric set
T a generating set of G if any element of G can be expressed as a product of elements in T .

Definition 7. Let G be a group and A,B ⊆ G symmetric generating sets not containing the
identity of G such that |A| = |B| and ag 6= gb for all g ∈ G, a ∈ A, and b ∈ B. The left-right
Cayley (LRC) complex on G with left edges in A and right edges in B is Cay(A,G,B) := X
where X(0) := G is the set of “vertices” of Cay(A,G,B),

X(1) := XA(1) ∪XB(1) := {{g, ag} : g ∈ G, a ∈ A} ∪ {{g, gb} : g ∈ G, b ∈ B}

forms its “edges”, and

X(2) := {[a, g, b] : a ∈ A, g ∈ G, b ∈ B}
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makes up its “squares” where [a, g, b] := {g, ag, agb, gb} denotes the square obtained by be-
ginning at g, travelling along the a-edge {g, ag}, the b-edge {ag, agb}, the a−1-edge {agb, gb},
and finally the b−1-edge {gb, g}.

For convenience, we denote by XA := (X(0), XA(1)) and XB := (X(0), XB(1)) the A
and B 1-skeletons of X. We also write Xg(2) for the set of squares containing a vertex
g ∈ X(0) and Xe(2) for the set of squares containing an edge e ∈ X(1).

A few quick remarks on the pre-conditions for the curious: Symmetry lets us “complete
the square” by following a−1 and b−1 edges. Using generating sets makes XA and XB

connected. We eliminate self-loops by excluding the identity from A and B. Lastly, ag 6= gb
prevents the squares of the complex from “collapsing” into edges.

Definition 8. An LRC complex X is a λ-expander if XA and XB are both λ-expanders.

2.1 The Parallel Walk

In this subsection, we introduce a random walk on the edges of an LRC complex given by
jumping across squares to “parallel” edges. This walk may not seem interesting now but we
will see that it captures an important aspect of the structure of the complex once we analyze
the LRC code in Section 3. For this reason, it may be easier to skip this subsection for now
and come back later once the role of the parallel walk becomes clear.

Definition 9. Let X := Cay(A,G,B) be an LRC complex. The parallel walk graph of X,
denoted X ||, is the neighbor walk operator of the graph with vertices X(1) and an edge from
{g, ag} to {agb, gb} as well as an edge from {ag, agb} to {gb, g} for every g ∈ G, a ∈ A,
b ∈ B. See Figure 2.1. The parallel walk operator of X, denoted PX , is just the neighbor
walk operator on X ||.

gb
•

agg
Figure 1: A snapshot of the parallel walk graph X || (shown in blue) over a single square of
X (shown in black).

Lemma 2. If X = Cay(A,G,B) is a λ-expanding LRC complex, then every connected

component of X || is a λ-expander under PX of size at least |X(1)|
|A|+|B| .

The idea of the proof is to show that each component of X || is of the form X |||Xσ(1)

for a “label” σ ∈ Ã ∪ B̃ where Ã := {{a, a−1} : a ∈ A}, B̃ := {{b, b−1} : b ∈ B}, and
Xσ(1) := {{g, cg} : c ∈ σ, g ∈ G} denotes the set of edges in X(1) “labelled” by σ.

Then, for σ = {a, a−1} ∈ Ã such that a 6= a−1, X |||Xσ(1) is isomorphic to XB via

{g, ag} 7→ g and is thus a λ-expander of size |X(0)| = 2 |X(1)|
|A|+|B| . The case a = a−1 is slightly

trickier (see the proof of Lemma 3.13 in [DEL+21]). The case σ ∈ B̃ is analogous.
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2.2 The Down-Neighbor-Up Walk

In this subsection, we discuss a walk whose role is complementary to that of the parallel
walk in characterizing the structure of an LRC complex. In this walk, one steps from an
edge “down” to a random incident vertex, walks to a random neighbor of this vertex, and
then steps back “up” to a random incident edge. Once again, it is fine to just skip ahead to
Section 3 and come back once the role of this walk become clearer.

Definition 10. Let X be an LRC complex. The down operator on X is the unique linear
map DX :M(X(1))→M(X(0)) s.t. DXe = U(e) for all e ∈ X(1). The up operator for X
is the unique linear map UX :M(X(0))→M(X(1)) s.t. UXg = U({e ∈ X(1) : g ∈ e}) for
g ∈ X(0). Finally, the down-neighbor-up operator for X is ∇X := UXNXDX .

Lemma 3. If X is a λ-expander, then so is ∇X .

The main idea of this proof is to notice that UX and DX are adjoint operators. That
is, 〈DXf, g〉 = 〈f, UXg〉 for all f ∈ M(X(1)) and g ∈ M(X(0)). Moreover, since XA and

XB are λ-expanders, it follows immediately that NX =
N
XA

+N
XB

2
is as well. Then, for any

f ∈M(X(1) with 〈f, 1〉 = 0, we have 〈DXf, 1〉 = 〈f, UX1〉 = 〈f, 1〉 = 0 and thus

〈∇Xf, f〉 = 〈UXNXDXf, f〉 = 〈NXDXf,DXf〉 ≤ λ 〈DXf,DXf〉 ≤ λ 〈f, f〉 .

3 The Left-Right Cayley Code

We now see how such a complex can be used to construct locally testable codes with good
rate and distance from an agreement testable base code.

Definition 11. Let X := Cay(A,G,B) be a LRC complex and let C0 ⊆ FA×B2 be a code.
We say that X lifts C to the code

CX
0 := {c ∈ FX(2)

2 : ∀g ∈ X(0) c([·, g, ·]) ∈ C0}

where c([·, g, ·]) denotes the string (a, b) 7→ c([a, g, b]) in FA×B2 .
For convenience, we denote by Cg := {c|Xg(2) : c ∈ C} the set of “local views” of the code

when restricted to the squares containing g ∈ X(0).

It is straightforward to check that CX
0 is in fact a linear code. Moreover, we note that

C0 will always be taken to be a tensor code CA ⊗ CB, in which case we have

CX
0 = {c ∈ FX(2)

2 : ∀g ∈ X(0) ∀a ∈ A ∀b ∈ B c([·, g, b]) ∈ CA, c([a, g, ·]) ∈ CB}. (1)

3.1 Rate

Lemma 4. Let X := Cay(A,G,B) be a LRC complex and let CA ⊆ FA2 and CB ⊆ FB2 be
any codes with rates at least ρ. Then

ρ((CA ⊗ CB)X) ≥ 4ρ− 3.

The details of this proof are not so interesting and thus we omit them. Nonetheless,
the main idea is just to count number of linear constraints in Equation 1 in terms of the
dimensions of CA and CB and then use the fact that the number of squares in X is |G||A||B|

4

(the 4 reflects the fact that each square has four representations as [a, g, b]).
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3.2 Distance

Lemma 5. Let X := Cay(A,G,B) be a λ-expanding LRC complex and let CA ⊆ FA2 and
CB ⊆ FB2 be any codes with distances at least δ. Then

δ((CA ⊗ CB)X) ≥ δ2(δ − λ).

Again, we skip some details. The idea is to consider a non-zero c ∈ (CA⊗CB)X and then
find g0 ∈ G such that c|Xg(2) 6= 0. Then, for w(a, b) := c([a, g0, b]), we have 0 6= w ∈ CA⊗CB
and hence there is a δ fraction of rows A∗ ⊆ A and a δ-fraction of columns B∗ ⊆ B such
that w(a, ·) 6= 0 and w(·, b) 6= 0 for all a ∈ A∗ and b ∈ A∗. Then, for any a ∈ A∗, apply the
Alon–Chung lemma to the support of

fa : XB(1)→ F2, {g, gb} 7→ c([a, g, b])

to show that it has size at least δ(δ−λ)
∣∣XB(1)

∣∣. Then conclude by noting that a δ-fraction
of these fa satisfy this property.

3.3 Local Testability

Now we come to the meat of the paper. We need to argue that, under the appropriate
assumptions, our LRC codes are locally testable with locality and soundness constant w.r.t.
their block size. Our test is simple: choose g ∈ X(0) uniformly at random and check that a
candidate agrees with a true codeword on the |Xg(2)| = |{[a, g, b] : a ∈ A, b ∈ B}| = |A| |B|
squares containing g.

Definition 12. Let C = CX
0 be an LRC code. The canonical local test for C is (Q,V)

where Q is the distribution on
(
X(2)
|A||B|

)
such that g ∼ U(X(0)) =⇒ Xg(2) ∼ Q and where

V :=
⋃
g∈GCg. By construction of C, this test rejects a candidate w ∈ FX(2)

2 with probability

rejC(w) := P
g∼U(X(0))

(w|Xg(2) /∈ C0).

This local test is clearly complete, but we claim that it is also sound as long as the
underlying complex is an expander and the base codes are agreement testable.

Theorem 2. Let X be a λ-expanding LRC complex and C = (CA⊗CB)X an LRC code such
that CA and CB have distance at least δ and are φ-agreement testable. As long as δ and φ
are large enough2 w.r.t. λ, then

rejC(w) ≥ κd(w,C)

for all w ∈ FX(2)
2 , where κ is some constant3 independent of |X(0)|. In particular, C is

locally testable with locality |A| |B| and soundness κ.

2λ < φδ
φ+8

3κ := min

{
φδ

φ+8−λ
2(|A|+|B|) ,

1
4(1+|A|+|B|)

}
.
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Algorithm 1 A decoder for a left-right Cayley code C = CX
0

procedure decodeC(w)
for g ← X(0) do

cg ← arg minc∈Cg
∥∥c− w|Xg(2)∥∥1

end for
repeat

for g ← X(0) do
if ∃c′g ∈ Cg that reduces R := {e = {g1, g2} ∈ X(1) : cg1|Xe(2) 6= cg2|Xe(2)} then

cg ← c′g
end if

end for
until all ifs fail
if R 6= ∅ then

return “stuck”
else

return [a, g, b] 7→ cg([a, g, b])
end if

end procedure

The key to proving soundness lies in the analysis of Algorithm 1, about which we now
make a few useful remarks: First, if you forgot what Cg means, refer to Definition 11.
Note that the algorithm always terminates since R decreases in size by at least one on
every iteration of the repeat loop. Finally, note that the output of the algorithm [a, g, b] 7→
cg([a, g, b]) is well-defined since R = ∅ implies that cg1 and cg2 must agree on all squares
to which both g1 and g2 belong (it is a good exercise to convince yourself of this before
proceeding to the analysis).

The following notation is helpful for the analysis.

Definition 13. We denote by c0g(w) the value of cg before the repeat loop executes and by
c−1g (w) its value after the repeat loop terminates when decodeC is run on w. We give R0(w)
and R−1(w) analogous meanings.

Proposition 1. For any w ∈ FX(2)
2 ,

|R0(w)|
|X(1)| ≤ 2rejC(w).

This is a short proof and I really encourage the reader to try writing it out formally just
to check their basic understanding of the objects at play here. The idea is just to apply a
kind of triangle inequality: for any edge {g1, g2} that contributes to R0(w), c0g1(w) and c0g2(w)
disagree, so they can’t both agree with w (when restricted to the appropriate squares).

Now, we arrive at what I believe is the most important (and interesting) result in the
paper. Roughly, it says if a string is far from an LRC code, then it must violate a constant
fraction of the linear constraints defining the code. This is in stark contrast to earlier
attempts at locally testable codes such as the LDPC codes in which a string may be very
far from the code yet only violate one constraint [Gol10]. The stars of this show are the
expansion of the underlying complex, the agreement testability of the base code, and their
interplay with the Alon–Chung lemma (Theorem 1).
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Lemma 6. Let X be a λ-expander and C = (CA ⊗ CB)X be an LRC code such that CA
and CB have distance at least δ and are φ-agreement testable. Then there is a constant4 α
independent of |X(0)| such that, for any w ∈ FX(2)

2 on which decodeC gets stuck, we have∣∣R−1(w)
∣∣ ≥ α |X(1)| .

Before we dive into the proof, now is a good time to quickly review Subsections 2.1 and 2.2
in case you don’t remember our good friends PX and ∇X (the parallel and down-neighbor-up
walks respectively).

Proof of Lemma 6. To ease the notational burden throughout this proof, we supress (w)
from the R−1(w) and c−1g (w).

Now, since decodeC gets stuck on w, we have R−1 6= ∅. Our goal is to show that R−1

contains a constant fraction of the edges X(1). We will achieve this by applying an averaging
argument to the random walks PX and ∇X to show that at least one of them remains in
R−1 with high probability and then applying Alon–Chung (Theorem 1). In particular, we
claim that, for some carefully chosen5 γ ∈ (0, 1),

γ P
e′∼PXe

(e′ ∈ R−1) + (1− γ) P
e′∼∇Xe

(e′ ∈ R−1) ≥ γδ (2)

holds for all e ∈ R−1. To this end, consider any edge e ∈ R−1. Without loss of generality,
assume e = {g0, a0g0} (the argument is symmetric for a b-edge).

We first claim that a constant fraction of the edges sharing a square with e must also
belong to R−1. Let’s give these edges names first. Define

EL := {{g0, g0b} : b ∈ B};
E|| := {{a0g0b, g0b} : b ∈ B}; and

ER := {{a0g0, a0g0b} : b ∈ B}.

See Figure 3.3 for a picture of these sets. Now, since e ∈ R−1, we have cg0|Xe(2) 6= ca0g0|Xe(2).
But {c|Xe(2):c∈C} is isomorphic to CB (via c 7→ b 7→ c([a0, g0, b])) and thus has distance at
least δ, so cg0|Xe(2) and ca0g0|Xe(2) must disagree on at least δ |B| squares. On any such square
[a0, g0, b], by transitivity either cg0 must disagree with cg0b, cg0b must disagree with ca0g0b, or
ca0g0b must disagree with ca0g0 . Thus∣∣R−1 ∩ EL

∣∣︸ ︷︷ ︸
=:mL

+
∣∣R−1 ∩ E||∣∣︸ ︷︷ ︸

=:m||

+
∣∣R−1 ∩ ER

∣∣︸ ︷︷ ︸
=:mR

≥ δ |B| . (3)

With this in the back of our minds, let’s start by computing the first term of the LHS of
Equation 2. Since E|| are exactly the neighbors of e in the parallel walk graph X || and since
PX is the neighbor walk operator on this graph,

P
e′∼PXe

(e′ ∈ R−1) =

∣∣R−1 ∩ E||∣∣
|E|||

=
m||

|B|
.

4α :=
φδ

φ+8−λ
|A|+|B|

5The choice wouldn’t make sense now, so we will define it later at the right moment.
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Figure 2: A few squares containing an edge {g, ag} with EL shown on the left in blue, ER

on the right in red, and E|| on the top in green.

Now, we come to the most technically involved part of the proof: we need to lower bound
the second term of Equation 2. To this end, consider the strings fAG (a, b) := c−1gb ([a, g, b]) and

fBg (a, b) := c−1ag ([a, g, b]). Since c−1gb ∈ Cgb and c−1ag ∈ Cag, it follows that fAg ∈ CA ⊗ FB2 and

fBg ∈ FA2 ⊗ CB. By agreement testability (recall Definition 3), there is wg ∈ CA ⊗ CB such
that the the fraction of entries in which fAg and fBg differ is at least φ times the fraction of
columns in which fAg and wg differ. Set c′g([a, g, b]) := wg(a, b) so that c′ ∈ Cg. Now, writing
Pa as shorthand for Pa∼U(A) (and similarly for Pb), we have

P
e′∼∇Xe

(e′ ∈ R−1) = E
g∼DXe

[
P

e′∼UXNXg
(e′ ∈ R−1)

]
≥ E

g∼DXe

[
1

22
P
a,b

({ag, agb} ∈ R−1) +
1

22
P
a,b

({gb, agb} ∈ R−1)
]

(NX takes a-neighbor and UX takes b-edge or vice-versa)

≥ 1

4
E

g∼DXe

[
P
a,b

({ag, agb} ∈ R−1 or {gb, agb} ∈ R−1)
]

≥ 1

4
E

g∼DXe

[
P
a,b

(c−1ag ([a, g, b]) 6= c−1gb ([a, g, b]))

]
(Transitivity along path ag → agb→ gb)

=
1

4
E

g∼DXe

[
P
a,b

(fAg (a, b) 6= fBg (a, b))

]
=
φ

4
E

g∼DXe

[
P
b
(fAg (·, b) 6= wg(·, b))

]
(Agreement testability)

=
φ

4 |B|
E

g∼DXe

[
|{b ∈ B : c−1gb |X{g,gb}(2) 6= c′g|X{g,gb}(2)}|

]
≥ φ

4 |B|
E

g∼DXe

[
|{b ∈ B : c−1gb |X{g,gb}(2) 6= c−1g |X{g,gb}(2)}|

]
(Were this not true, decodeC would have set cg ← c′g)

=
φ(mL +mR)

8 |B|
. (DXe = U({g0, a0g0}))
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Finally, choose γ := φ
φ+8

(so that 1− γ = 8γ/φ). As e ∈ R−1 was arbitrary, we have

γ E
e∼R−1

[
P

e′∼PXe
(e′ ∈ R−1)

]
+ (1− γ) E

e∼R−1

[
P

e′∼∇Xe
(e′ ∈ R−1)

]
≥ γm||

|B|
+

(1− γ)φ(mL +mR)

8 |B|

=
γ(mL +m|| +mR)

|B|
≥ γδ (Equation 3)

In particular, either Ee∼R−1 [Pe′∼PXe(e′ ∈ R−1)] ≥ γδ or Ee∼R−1 [Pe′∼∇Xe(e′ ∈ R−1)] ≥ γδ. In
the former case, a simple averaging argument implies that there is some connected component
K of X || for which Ee∼R−1∩K [Pe′∼PXe(e′ ∈ R−1 ∩ K)] ≥ γδ, whereupon Lemma 2 together
with Theorem 1 yield that∣∣R−1∣∣ ≥ ∣∣R−1 ∩K∣∣ ≥ (γδ − λ) |K| ≥ γδ − λ

|A|+ |B|
|X(1)| .

Likewise, if Ee∼R−1 [Pe′∼∇Xe(e′ ∈ R−1)] ≥ γδ, then Lemma 3 and Alon–Chung directly yield∣∣R−1∣∣ ≥ (γδ − λ) |X(1)| .

Proof of Theorem 2. Let w ∈ FX(2)
2 . We need to show that rejC(w) is bounded below by a

constant times d(w,C).
First, assume decodeC gets stuck on w. Then, by Proposition 1 as well as Lemma 6,

2rejC(w) ≥ |R
0(w)|
|X(1)|

≥ |R
−1(w)|
|X(1)|

≥ α ≥ αd(w,C).

On the other hand, assume that decodeC(w) does not get stuck and returns c ∈ C. Let
V1 := {g ∈ X(0) : w|Xg(2) 6= c0g(w)} be the vertices at which the local view does not initially
agree with w and let V2 := {g ∈ X(0) : c0g(w) 6= c−1g (w)} be the vertices at which the local
view changes during the execution of the algorithm. Since each c0g(w) is the closest point in
Cg to w, we have

|V1| =
∣∣{g ∈ X(0) : w|Xg(2) /∈ Cg}

∣∣ = rejC(w) |X(0)| .
On the other hand, since R decreases by at least one at every step of the repeat loop,

|V2| ≤
∣∣R0(w)

∣∣ ≤ 2rejC(w) |X(1)| = rejC(w)(|A|+ |B|) |X(0)|
where the second inequality follows from Proposition 1 and the equality follows from the
handshake lemma and the fact that every vertex of X has degree |A| + |B|. Finally, notice
that if a square s ∈ X(2) does not meet V1 or V2, then we must have w(s) = c(s) (since all
local views in s match w initially and do not change), so, since every vertex meets |A| |B|
squares, it follows that

d(w,C) ≤ ‖w − c‖1
|X(2)|

≤ |V1 ∪ V2| |A| |B||X(0)||A||B|
4

≤ 4(1 + |A|+ |B|)rejC(w).
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4 Locally Testable Codes of Constant Rate, Distance,

and Locality

We’ve now seen most of the main insights of [DEL+21]. The machinery of the LRC complexes
and codes is now in place. It just remains to furnish this machinery with the right group
structure and instantiate it with the agreement testable base codes that we have seen.

Theorem 3. For every rate ρ ∈ (0, 1), there exist δ > 0, q ∈ N, κ > 0, and a family of
locally testable codes {Cn}n∈N such that Cn has rate at least ρ, distance at least δ, locality q,
and soundness κ and such that the block size of Cn tends to infinity as n→∞.

To prove the theorem, we require good LRC complexes, whose existence can be proved
by considering the projective special linear groups over large finite fields.

Lemma 7. For every d ∈ Z+ and every sufficiently large odd prime power q, there exists a
multiple d′ of d such that, for all n ∈ Z+, there is a group Gn of size much larger than n and
a pair An, Bn ⊆ Gn of symmetric generating sets with size d′ not containing the identity of
Gn such that ag 6= gb for all a ∈ An, b ∈ Bn, and g ∈ Gn and such that Cay(An, Gn, Bn) is
an 8/

√
d-expander.

Proof of Theorem 3. Let ρ ∈ (0, 1). By Lemma 1, there are δ, φ > 0 and D ∈ Z+ such that,
for every sufficiently large multiple d of D, there is a code Cd ⊆ Fd2 for which ρ(Cd) ≥ ρ,
δ(Cd) ≥ δ, and Cd⊗Cd is φ-agreement testable. By Lemma 7, there is some multiple d of D
for which “good” An, Bn, and Gn exist and, making d larger as needed, so that 8/

√
d < δφ

φ+8

and so that there is C0 ⊆ Fd2 as in Lemma 1. Then, for every n ∈ Z+, let CAn ⊆ FAn2 and
CBn ⊆ FBn2 be isomorphic to C0 and put Cn := (CAn⊗CBn)Cay(An,Gn,Bn) so that Cn has block
size at least |Gn| � n and so that

ρ(Cn) ≥ 4ρ− 3 (Lemma 4)

δ(Cn) ≥ δ2(δ − 8/
√
d) (Lemma 5)

and so that Cn is d2-agreement testable with soundness

min

{
φδ
φ+8
− 8/
√
d

4d
,

1

4(1 + 2d)

}
. (Theorem 2)
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