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1 Introduction

1.1 Private Learning

Differential privacy is a property of a randomized algorithm demanding that the distribution
of its output is not too sensitive to local changes to the input [Dwo06]. This makes it more
difficult to maliciously infer sensitive local information in the input to an algorithm when
the output is publicly released. A typical formalization is as follows:

Definition 1. For a measurable space W, a randomized algorithm A : Zm → W is called
(ε, δ)-private if

P(A(z) ∈ W ) ≤ eε P(A(z′) ∈ W ) + δ

holds for all measurable W ⊆ W and z, z′ ∈ Zm such that z and z′ differ in one coordinate.

Learnability, on the other hand, may be treated as a property classes of hypotheses
mapping features to labels demanding that an arbitrary hypothesis can be approximately
recovered from random samples labelled by the hypothesis.

Definition 2. Given a distribution D ∈ ∆(X × F2), the population loss of a hypothesis
h ∈ FX2 with respect to D is LD(h) := P(x,y)∼D(h(x) 6= y). The loss of a class H ⊆ FX2 is
LD(H) := infh∈H LD(h).

Definition 3. We say that a (possibly randomized) algorithm A : (X ×F2)
m is a (α, β)-PAC

learner for a class H ⊆ FX2 if, for any distribution D ∈ ∆(X × F2) s.t. LD(H) = 0, we have

P
S∼Dm

(LD(A(S)) > α) ≤ β.

In this language, learnability just means that α and β can be made arbitrarily small,
provided that m is large enough. The line of work on private learning begins with [RSL+08],
who extend this notion of learning to account for privacy.

Definition 4. We say that A : (X × F2)
∗ → FX2 is a private realizable PAC learner1 for

a class H ⊆ FX2 with sample complexity m : (0, 1)4 → N when, for any α, β ∈ (0, 1) and
ε, δ > 0, A|(X×F2)m(α,β,ε,δ) is (ε, δ)-private and (α, β)-accurate for H.

1Known closure properties of learning allow us to boost these results to the agnostic setting [ABMS20].
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1.2 Online Learning

Roughly, a class is online learnable when some algorithm that receives examples labelled
by an unknown hypothesis one at a time and predicts a new hypothesis at every step has
sublinear regret.

Definition 5. A sample S := ((x1, y1), . . . , (xm, ym)) ∈ (X × F2)
∗ is called H-realizable if

there is some h ∈ H s.t. yt = h(xt) for all t ∈ [m], in which case we define the regret of an
algorithm A : (X × F2)

∗ → FX2 as

RA(S) := |{t ∈ [m] : A((x1, y1), . . . , (xt−1, yt−1))(xt) 6= yt}| .

Definition 6. A class H is realizably online learnable if there is some algorithm A such that

lim
t→∞

RA((x1, h(x1)), . . . , (xt, h(xt))

t
= 0

for any x1, x2, · · · ∈ X and h ∈ H.

It turns out that, much like other models of learnability, online learnability is character-
ized by a combinatorial measure [Lit88].

Definition 7. Representing a full tree of depth d labelled by a feature space X as a map
T :
⋃d−1
t=0 Ft2 → X , we say that H ⊆ FX2 shatters T if, for every y1, . . . , yd ∈ F2, there is some

h ∈ H for which yt = h(T (y1, . . . , yt−1)) for every t ∈ [d]. The Littlestone dimension of H,
LDimH, is the largest positive integer d such that H shatters some T :

⋃d−1
t=0 Ft2 → X .

Theorem 1. A class H is realizably online learnable if and only if LDimH <∞, in which
case there is an online learner SOA satisfying RSOA(S) ≤ LDimH for every realizable S.

2 Relationship Between Private and Online Learning

2.1 Private Learning Implies Online Learning

A recent line of work establishes a rich connection between these seemingly unrelated mod-
els of learning. The first paper, [ALMM19], shows that private learnability implies online
learnability.

Theorem 2. For any H and private realizable PAC learner A with sample complexity m,

m := m(1/16, 1/16, 1/10, δ) = Ω(log∗(LDimH))

for some δ = O
(

1
m2 logm

)
(provided such a δ exists for A). In particular, LDimH must be

finite and H must be realizably online learnable by Theorem 1.

We remark that the condition δ = O
(

1
m2 logm

)
is actually quite mild and indeed holds

in the standard regime of differential privacy δ = m−ω(1) (see e.g. [Vad17]).
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To prove this result, the authors first invoke a theorem of [She90] to reduce to the case
where H is a class of thresholds.

The main remaining hurdle to overcome is that the given private learner may not be
proper. The authors leverage Ramsey theory [ER52] to argue that even a randomized im-
proper learner must obey satisfy some form of regularity over a sufficiently large subdomain.

Lemma 1. For any ordered set X of size n, A : (X × F2)
∗ → FX2 , and even m ∈ 2N, there

is X ′ ⊆ X with size at least log(m)(n)

2O(m logm) as well as p0, . . . , pm ∈ [0, 1] such that∣∣E[A(((x1, 0), . . . , (xm/2, 0), (xm/2+1, 1), . . . , (xm, 1)))(x)]− pi
∣∣ = O(1/m)

for any x1 < · · · < xi < x < xi+1 < · · · < xm ∈ X ′.

In the case of thresholds, this regularity essentially implies that the expected output of A
is approximately proper. The authors then use binary search to construct an identification
attack on the output of the private learner whenever n is too large, which contradicts privacy.

To conclude this subsection, it also worth noting that the log∗ dependence on LDimH is
nearly tight for some classes. In particular, [KLM+20] show that for a class H of thresholds
can be privately learned in Õ((log∗(LDimH)1.5) samples.

2.2 Online Learning Implies Private Learning

A followup collaboration with Mark Bun [BLM20] addresses the converse.

Theorem 3. Let H ⊆ FX2 have finite Littlestone dimension d. There exists a realizable PAC
learner for H with sample complexity

m(α, β, ε, δ) = O

(
2Õ(2d) − log(βδ)

αε

)
.

They prove this result via a new notion of stability:

Definition 8. A (possibly randomized learning algorithm) A : (X × F2)
∗ → FX2 is called

globally (m, η)-stable with respect to D ∈ ∆(X × F2)

∃h∗ ∈ FX2 P
S∼Dm

(A(S) = h∗) ≥ η.

The authors argue that, for a class H of finite Littlestone dimension d, there is a globally
(22O(d)

, 2−2
O(d)

)-stable learner with respect to any distribution D ∈ ∆(X × F2) for which
LD(h∗) = 0 for some h∗ ∈ H. Intuitively, this should not be suprising as SOA makes only
finitely many mistakes and thus we should expect it to identify h∗ with high probability on
sufficiently large samples. Although the precise proof is much more involved, the idea is
that the more mistakes an online learner mistakes, the more quickly it can identify h∗, so
we should try to force SOA to make as many mistakes as early as possible. We can achieve
this by inductively drawing pairs of samples from D, randomly choosing between them, and
then appending an example that causes a mistake. Algorithm 1 gives a detailed account of
this sampling procedure and the resulting globally stable learner.
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Algorithm 1 A globally stable learner for Littlestone classes

Set N and n carefully
procedure sample(k)

if k = 0 then
return ()

else if
repeat then

(S1, S2)← (sample(k − 1), sample(k − 1))
(T1, T2) ∼ Dn ⊗Dn

if Total number of calls to D so far exceeds N then
return “fail”

end if
until y1 := SOA(S1 ◦ T1)(x) 6= SOA(S2 ◦ T2)(x) =: y2 for some x ∈ X
return S1 ◦ T1 ◦ ((x, y2)) or S2 ◦ T2 ◦ ((x, y1)), each with probability 1/2

end if
end procedure
procedure learner

k ∼ U({0, . . . , d})
S ← sample(k)
T ∼ Dn

return SOA(S ◦ T )
end procedure

Globally (m, η)-stable learner G in hand, the next step is to construct a private learner.
Given a random sample S, we would like to privatize ERM via the exponential mechanism
[MT07]. In particular, we would like to return a random hypothesis h ∈ H with prob-
ability proportional to e−cLS(h), where c is some appropriately chosen constant to ensure
privacy. However, the exponential mechanism will not succeed until we narrow the search
space (it must be finite at least). This is where global stability comes in. The trick is to
draw k samples (S1, . . . , Sk) ∼ (Dm)k (for sufficiently large k), form a private histogram
[KKMN09] from the candidate hypotheses G(S1), . . . , G(Sk) that is accurate to within O(η)
(with high probability), and discard those with estimated frequency much less than η. Using
the standard statistical toolbelt (e.g. uniform convergence, Chernoff), one can show that the
resulting finite list of hypotheses contains h∗ with high probability and so sampling it via the
exponential mechanism with empirical risk as its score function achieves good generalization.

The sampling procedure sample has been significantly streamlined by [GGKM21] to
reduce the dependence on d from doubly exponential to polynomial. They also show how to
boost a private improper learner to a private proper learner via some notion of irreducibility.

Theorem 4. Let H ⊆ FX2 have finite Littlestone dimension d. There exists a private, proper
realizable PAC learner for H with sample complexity

m(α, β, ε, δ) = O

d6 log
(

d
εδαβ

)2
εα2

 .
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2.3 Complexity

Understanding on the computational complexity of the reduction from online to private
learning and vice-versa remains only partial. [Bun20] shows that, under typical cryptographic
assumptions, efficient private learnability does not imply efficient online learnability:

Theorem 5. Assuming the existence of one-way functions, there is a hypothesis class that
is privately PAC learnable in polynomial-time but is not online learnable by any polytime
algorithm with a polynomial mistake bound.

The proof involves the same hypothesis class used by [Blu94] to show an analogous
computational separation from PAC learnability to online learnability.

2.4 Open Problems

Two open problems of interest to me are:

1. The gap in sample complexity from log∗(d) to d6 is still very large. Can this depen-
dence on d be tightened further? The result of [KLM+20] suggests that the optimal
dependence on d may be closer to log∗(d), although this remains to be seen.

2. While the existence of a computationally efficient reduction from private to online
learning has been settled by [Bun20], the converse remains open. Is there a polytime
reduction from online to private learning?
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